昆明理工大学冯晶获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网获悉昆明理工大学申请的专利一种基于机器学习的理想带隙钙钛矿材料筛选方法获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN115579089B 。
龙图腾网通过国家知识产权局官网在2025-06-13发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202211397291.3,技术领域涉及:G16C60/00;该发明授权一种基于机器学习的理想带隙钙钛矿材料筛选方法是由冯晶;杨超;种晓宇;何京津;余威设计研发完成,并于2022-11-09向国家知识产权局提交的专利申请。
本一种基于机器学习的理想带隙钙钛矿材料筛选方法在说明书摘要公布了:本发明涉及一种基于机器学习的理想带隙钙钛矿材料筛选方法,包括采集有机无机杂化钙钛矿材料实验带隙数据,利用钙钛矿本征特征构建特征池,计算特征间皮尔逊相关系数剔除相关性强的冗余特征,再利用梯度提升回归树算法对剩余特征进行重要性排序,按排序顺序进行迭代学习以筛选模型精度最高时的最优子特征组合,通过最优子特征构建基于梯度提升回归算法和符号回归算法的机器学习带隙预测模型。本发明利用元素本征特征作为组分与带隙间的中间输入,与直接用组分作为输入的方法相比,降低了特征维度与模型复杂度,提出的子特征筛选方法与符号回归算法的结合,将模型维度降低到一维,在保证精度的前提下模型简单且使用方便,利于大规模预测筛选。
本发明授权一种基于机器学习的理想带隙钙钛矿材料筛选方法在权利要求书中公布了:1.一种基于机器学习的理想带隙钙钛矿材料筛选方法,其特征在于,包括以下步骤: 步骤1,采集钙钛矿材料数据和每种钙钛矿材料对应的带隙实验值,所有钙钛矿材料的元素组成为ABX,A、B和X三种位置的元素剂量比和为1:1:3,其中,A代表Cs、FA和MA中的任一种、任两种或三种组合,FA为HCNH22,MA为CH3NH3,B代表Pb和Sn中的任一种或两种组合,X代表Br、Cl和I中的任一种、任两种或三种的组合; 步骤2,以元素剂量比为权重,对A、B、X元素对应的本征特征进行加权数学运算得到加权平均特征,再将加权平均特征进行加、减、除运算,得到运算特征,将加权平均特征和运算特征作为初始特征;步骤2中,所述元素对应的本征特征包括:Goldscmidt容忍因子,八面体因子,平均泡利电负性,平均香浓离子半径,平均电子亲和势,s、p、d、f轨道平均电子数,平均原子极化率,平均原子半径; 步骤3,通过计算初始特征间皮尔逊相关系数剔除相关性0.95的冗余初始特征,构建特征池; 步骤4,基于步骤3计算得到的特征池,运用GBRT算法进行特征重要性排序; 步骤5,以GBRT算法测试集预测精度为目标函数,进行子特征迭代筛选,筛选出GBRT模型精度最高时对应的子特征集; 步骤6,以步骤5筛选出的子特征集为输入自变量,钙钛矿实验带隙值为输出因变量,构建钙钛矿材料的带隙预测模型; 步骤7,根据元素组成,按各元素剂量比0-1,步长0.01的组分梯度,构建待筛选钙钛矿材料组分数据集,利用带隙预测模型预测并筛选出理想带隙对应的钙钛矿材料。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人昆明理工大学,其通讯地址为:650031 云南省昆明市一二一大街文昌路68号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。