Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于机器学习算法的风险分层评估方法及系统 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:东南大学

摘要:本发明公开了一种基于机器学习算法的风险分层评估方法及系统,涉及生物医药技术领域,包括以下步骤:获取患者相关数据,将其中一个独立中心数据作为验证集,其余患者相关数据进行随机分配,得到训练集、测试集;将训练集的患者数据输入至基于随机森林算法的预测模型内,构建风险得分计算公式得到风险评分,利用等宽分段原则对风险得分进行分段,其中,分段包括:低、中、高危风险人群;将测试集数据输入至训练后的基于随机森林算法的预测模型内,进行参数调整;将验证集数据用于模型评估,并验证风险评分系统对高、中、低危风险人群的区分度,加入了CT图像L1横突水平的相关参数,用机器学习算法整合患者的多维度临床特征,在保证模型较高泛化能力的同时提高了预测准确率。

主权项:1.一种基于机器学习算法的风险分层评估方法,其特征在于,方法包括以下步骤:获取患者相关数据,将其中一个独立中心数据作为验证集,其余患者相关数据进行随机分配,得到训练集、测试集;将训练集的患者数据输入至基于随机森林算法的预测模型内,构建风险得分计算公式得到风险评分,利用等宽分段原则对风险得分进行分段,其中,分段包括:低、中、高危风险人群;将测试集数据输入至训练后的基于随机森林算法的预测模型内,进行参数调整;将验证集数据用于训练后的基于随机森林算法的预测模型评估,并验证风险评分系统对高、中、低危风险人群的区分度。

全文数据:

权利要求:

百度查询: 东南大学 一种基于机器学习算法的风险分层评估方法及系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术