首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于联邦学习的数据增强方法及系统 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:吉林大学

摘要:本申请公开了一种基于联邦学习的数据增强方法及系统,涉及数据处理技术领域,该方法包括:根据各边缘节点的距离,将与中心服务器连接的所有边缘节点划分为多个边缘组,各边缘组中任意两个边缘节点之间的距离小于设定距离阈值;中心服务器部署有全局模型,各边缘节点均部署有本地模块,全局模型和各本地模块均为生成对抗网络;采用各边缘节点的本地数据对全局模型进行联邦学习,得到各边缘节点训练好的本地模型;联邦学习的每轮全局训练时,随机选择一个边缘组与中心服务器进行全局模型训练;采用各边缘节点的训练好的本地模型进行本地数据增强;训练好的本地模型用于根据输入的原始图像输出新的样本图像。本申请提高了数据增强的有效性。

主权项:1.一种基于联邦学习的数据增强方法,其特征在于,所述基于联邦学习的数据增强方法包括:根据各边缘节点的距离,将与中心服务器连接的所有边缘节点划分为多个边缘组,各边缘组中任意两个边缘节点之间的距离小于设定距离阈值;所述中心服务器部署有全局模型,各所述边缘节点均部署有本地模块,所述全局模型和各所述本地模块均为生成对抗网络;采用各边缘节点的本地数据对所述全局模型进行联邦学习,得到各边缘节点训练好的本地模型;所述联邦学习的每轮全局训练时,随机选择一个边缘组与所述中心服务器进行全局模型训练;采用各边缘节点的训练好的本地模型进行本地数据增强;训练好的本地模型用于根据输入的原始图像输出新的样本图像。

全文数据:

权利要求:

百度查询: 吉林大学 一种基于联邦学习的数据增强方法及系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。