买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:东南大学
摘要:本发明公开了一种基于最小二乘法的出行活动行为选择模型参数标定方法,用于解决城市交通规划中的模型参数标定问题。该方法包括以下步骤:1定义数据类型,进行预处理;2以最小二乘法为核心,设计上层优化模型,求解出行活动行为选择模型的参数最优估计;3以交通分配为核心,设计下层优化模型,求解交通网络中的流量分布;4采用模拟退火法求解该双层优化模型,得到参数的估计值;5应用卡尔曼滤波器,对参数的估计值进行平滑,输出参数的最终标定值。应用本发明提出的方法可以有效地为出行活动行为选择模型进行参数标定,具有广泛的适用性,并且可以根据需求调整输入数据量以及模型的精确度。
主权项:1.一种基于最小二乘法的出行活动行为选择模型参数标定方法,其特征在于,该方法包括以下步骤:1定义数据类型,进行预处理;2以最小二乘法为核心,设计上层优化模型,求解出行活动行为选择模型的参数最优估计;3以交通分配为核心,设计下层优化模型,求解交通网络中的流量分布;4采用模拟退火法求解双层优化模型,得到参数的估计值;5应用卡尔曼滤波器,对参数的估计值进行平滑,输出参数的最终标定值;所述步骤1定义数据类型,进行预处理的具体实施过程为:11:定义参数标定模型的输入数据属性如下:日期DATE:出行者的出行日期;记录编号ID:唯一标识每一条数据;出行者编号MSISDN:唯一标识每一位出行者;出行者家庭成员编号HOUSEHOLD_MEM:标识出行者的家庭成员;出行起点编号START_LOCATION:出行起点区域的编号;出行终点编号END_LOCATION:出行终点区域的编号;开始时间BEGIN_TIME:出行者出行的开始时间;结束时间END_TIME:出行者出行的结束时间;12:对数据进行预处理,提取居民的出行以及活动信息;12.1:居民出行行为识别:用ind表示一位居民,IND表示所有居民的集合,在11所述的数据属性中,如果居民ind的某一次数据记录START_LOCATION!=END_LOCATION且BEGIN_TIME<END_TIME,则认为该记录是居民ind的一次出行,用符号Tripindk来表示居民ind在指定日期的第k次出行,符号Trip来表示所有居民的出行行为集合,符号timetravel来表示居民完成一次出行所用的时间;12.2:居民活动行为识别:对于居民ind的出行记录Tripindk,如果Tripindk-1的END_LOCATION与Tripindk的START_LOCATION相同,且Tripindk-1的END_TIMETripindk的BEGIN_TIME,则认为居民在Tripindk-1与Tripindk两次出行之间存在活动行为,其中,Tripindk的START_LOCATION作为居民活动地点,Tripindk的BEGIN_TIME与Tripindk-1END_TIME之差为居民的活动行为时间长度,用符号timeactivity表示;13:居民的联合出行行为识别:如果居民ind的START_LOCATION和END_LOCATION与家庭成员mem的START_LOCATION和END_LOCATION相同,且absBEGIN_TIMEind-BEGIN_TIMEmem+absEND_TIMEind-END_TIMEmem<Time_gap,则认为居民ind与家庭成员mem存在联合出行行为,其中,Time_gap为给定的阈值,abs为取绝对值函数;14:统计研究区域各路径的交通流量:一个出行起点与出行终点的组合称为出行路径,用符号p表示,研究区域中的所有路径集合记为P,指定日期内从某出行起点到出行终点的人数称为该路径的交通流量,将步骤12与步骤13中识别的出行行为与活动行为按照不同的出行路径p统计交通流量,研究区域内所有的交通流量总和为该区域的交通需求,用符号q表示;所述步骤2以最小二乘法为核心,设计上层优化模型,求解出行活动行为选择模型的参数最优估计的具体过程为:21:建立目标函数:记步骤1数据预处理后的研究区域的路网中路径p的交通流量为op,待标定的出行活动行为选择模型的参数为X,利用该模型计算的路网中每条路径p的流量为fp,以最小二乘法为核心思想,得到参数标定问题的目标函数为: 式中,min为取最小值函数;22:建立约束条件:目标函数中的变量fp和op取值范围必须非负,进而得到约束条件为:fp≥02op≥03;所述步骤3以交通分配为核心,设计下层优化模型,求解交通网络中的流量分布的具体实施过程为:31:确定输入输出:下层优化模型的输入为待标定的出行活动行为选择模型的参数X,研究区域的交通需求q;输出为研究区域交通网络中不同路径p的交通流量fp;32:将步骤31中确定的交通出行需求q,利用出行活动行为选择模型分配到研究区域路网中:32.1:定义目标函数:假设所有居民均选择满意度最高的路径进行一次出行,居民选择路径p出行的满意度用符号表示,可用下式计算: 式中,和分别为居民在路径p进行活动时的满意度以及在路径p进行出行时的满意度,其计算公式如下所示: 式中,a1,b1,a2,b2为常数;在公式4中,cfp为居民与家庭成员进行联合出行时的满意度系数,取值范围在[0,1]之间,cfp可用下式计算: 式中,是居民在路径p进行联合出行的时间长度;是居民在路径p进行出行或活动的总时间长度;表明了居民在路径p中联合出行的时间占总出行活动时间的比例,X是出行活动行为选择模型中所要标定的参数,其值大于等于0;记为居民在一次出行活动时可能获得的最大满意度,则得到下层优化模型的目标函数: 该目标函数的物理意义为城市中所有的居民均选择满意度最高的路径进行出行或者活动;33定义约束条件,根据下层优化模型变量的物理意义,限制下层优化模型的约束条件为: 所述步骤4采用模拟退火法求解双层优化模型,得到参数的估计值的具体实施过程为:41:上层优化模型求解;41.0:算法初始化:设置算法退火温度Tn的初始值T0,冷却因子σ<1,冷却步长Nstep;确定算法停止标准,最终温度Tstop和最大迭代步长Nstop;初始化计数器Ncount=m=n=l=0;给出行活动行为选择模型的参数值X赋初始值X0,用X0的值求解公式8-10得到的路网交通流量fp0输入给公式1,得目标函数初始值ZX0;41.1:下层优化模型求解,令计数器l=l+1,用公式计算X′,其中,是区间上的随机值,α是搜索步长,用X′的值求解公式8-10,计算得第l次迭代的路网流量fpl;用符号G-value表示下层优化模型迭代时的精度,其可用下式计算: 当G-value小于给定的阈值时,下层优化模型停止迭代,将此时的路网流量fpl输入给上层优化模型,求得目标函数值ZX′,计算Δ=ZX′-ZX;41.2:梅特罗波利斯准则:41.21:如果Δ≤0,说明新的参数值X′可以使上层规划的目标函数值降低,令X=X′,m=m+1,转至步骤41.3,否则,转至步骤41.22;41.22:令θ=expΔTn,如果θ>区间[0,1上的随机值,则令X=X′,m=m+1,转至步骤41.3,否则,转至步骤41.23;41.23:令m=m+1,Ncount=Ncount+1,转至步骤41.3;41.3:退火:如果m<Nstep,则转至步骤41.1,否则令n=n+1,Tn=σ·Tn-1,m=0,转至步骤41.4;41.4:内循环终止判断:如果Ncount>Nstop或Tn<Tstop,则内循环终止并输出此时的参数值X,否则转至步骤41.1;42:外循环终止判断:记RGAP为外循环的迭代误差,RGAP用下式计算: 如果RGAP<ε,ε为收敛精度,则外循环结束,输出此时的参数值X;否则转至步骤41.0;所述步骤5应用卡尔曼滤波器,对参数的估计值进行平滑,输出参数的最终标定值的具体实施过程为:51:初始化:初始化步骤4计算得到的参数值X的观测误差W和系统误差V;52:用误差更新待标定参数值:记i为迭代次数,将观测误差和系统误差纳入参数估计过程,用下式更新参数X的值:Xi=φXi-1+W13Xi'=HXi+V14式中,φ是状态转移矩阵,H是观测矩阵;53:用协方差更新待标定参数值:记Ei为第i次迭代的协方差矩阵,则由上一轮迭代的协方差矩阵Ei-1和噪声误差W计算新一轮迭代的协方差矩阵Ei,计算公式为:Ei=φEi-1φT+W1554:计算待标定参数的卡尔曼增益:卡尔曼增益Kg的计算方法为:Kgi=EiHT[HEiHT+V]-11655:更新待标定参数的预测值:第i轮计算的参数值为Xi=Xi-1+Kgi[Xi'-HXi-1],以及协方差矩阵Ei=[I-KgiH]Ei-1,其中,I为单位矩阵。
全文数据:
权利要求:
百度查询: 东南大学 一种基于最小二乘法的出行/活动行为选择模型参数标定方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。