Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

基于深度强化学习的无人机路线规划方法及系统 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:云南民族大学

摘要:本发明提出基于深度强化学习的无人机路线规划方法,方法包括:利用基于梯度的柏林噪声和数字高程图构建三维非结构化地图;构建基于固定翼无人机的含约束的无人机自主探索的部分可观测马尔可夫决策过程模型对固定翼无人机的飞行路线进行约束;根据部分可观测马尔可夫决策过程模型构建基于深度学习的路线规划模型,并采用PPO算法对所述路线规划模型进行优化。本发明使用深度神经网络,拟合强化学习的动作价值函数、策略、模型等组成部分,构建从局部观测到值函数和策略函数的深度神经网络近似映射,建立部分可观测马尔可夫决策过程模型,完成强化学习框架搭建,提高模型在应对大规模状态空间时的鲁棒性与泛化能力。

主权项:1.基于深度强化学习的无人机路线规划方法,其特征在于,所述方法包括:S1、利用基于梯度的柏林噪声和数字高程图构建三维非结构化地图;S2、构建基于固定翼无人机的含约束的无人机自主探索的部分可观测马尔可夫决策过程模型对固定翼无人机的飞行路线进行约束;S3、根据部分可观测马尔可夫决策过程模型构建基于深度学习的路线规划模型,并采用PPO算法对所述路线规划模型进行优化。

全文数据:

权利要求:

百度查询: 云南民族大学 基于深度强化学习的无人机路线规划方法及系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。