首页 专利交易 科技果 科技人才 科技服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

【发明授权】一种具有抗静电层的III族氮化物半导体外延结构_南昌大学_201910433150.4 

申请/专利权人:南昌大学

申请日:2019-05-23

公开(公告)日:2024-06-14

公开(公告)号:CN110246831B

主分类号:H01L23/60

分类号:H01L23/60;H01L29/06;H01L29/20;H01L31/0304;H01L31/0352;H01L33/32

优先权:

专利状态码:有效-授权

法律状态:2024.06.14#授权;2019.10.15#实质审查的生效;2019.09.17#公开

摘要:本发明公开了一种具有抗静电层的III族氮化物半导体外延结构,依次包括:III族氮化物半导体外延结构前端部分、AlxGa1‑xN抗静电层和III族氮化物半导体外延结构后续部分,III族氮化物半导体外延结构前端部分内的穿透位错线位置处形成由平面和倒六角锥状坑组成的倒六角锥结构,AlxGa1‑xN抗静电层形成于所述倒六角锥结构之上。AlxGa1‑xN抗静电层在倒六角锥状坑侧壁的厚度显著大于其在平面上的厚度,且在倒六角锥状坑锥底位置填充了AlxGa1‑xN并形成一个平台,使得穿透位错线在倒六角锥状坑底部附近形成远高于倒六角锥结构平面位置的电阻,从而大幅提升III族氮化物半导体外延结构的抗静电性能,使之接近无穿透位错的III族氮化物应有的高抗静电能力。

主权项:1.一种具有抗静电层的族氮化物半导体外延结构,包括族氮化物半导体外延结构前端部分和族氮化物半导体外延结构后续部分,其特征在于:所述族氮化物半导体外延结构前端部分和所述族氮化物半导体外延结构后续部分之间插入有AlxGa1-xN抗静电层;所述族氮化物半导体外延结构前端部分含有倒六角锥结构,所述倒六角锥结构形成于所述族氮化物半导体外延结构前端部分内的穿透位错线位置处,倒六角锥结构由平面以及镶嵌在平面内的倒六角锥状坑组成,穿透位错线和倒六角锥状坑锥底尖端相交;所述AlxGa1-xN抗静电层形成于所述倒六角锥结构之上并填充所述倒六角锥状坑锥底形成一个平台;所述III族氮化物半导体外延结构后续部分位于所述AlxGa1-xN抗静电层之上并将所述倒六角锥结构形成的倒六角锥状坑填平;所述AlxGa1-xN抗静电层在倒六角锥结构的平面、倒六角锥状坑侧壁以及倒六角锥状坑锥底位置具有不同的厚度;所述倒六角锥状坑表面对角宽度为L,所述AlxGa1-xN抗静电层在所述倒六角锥结构平面的Al组分0.3≤x≤1,厚度为h1,所述AlxGa1-xN抗静电层在所述倒六角锥状坑侧壁的Al组分0.3≤x≤1,厚度为h2,所述AlxGa1-xN抗静电层在所述倒六角锥状坑锥底的Al组分0.3≤x≤1,宽度为L1,其中2≤h2h1,50nm≤L≤500nm,0.1≤L1L≤0.8。

全文数据:一种具有抗静电层的III族氮化物半导体外延结构技术领域本发明涉及III族氮化物半导体外延结构,尤其是涉及一种具有抗静电层的III族氮化物半导体外延结构。背景技术在半导体器件生产、测试、包装、储存、运输、安装以及使用的过程中,可以说时时刻刻都要接触到静电,而其电压值从几百伏到几万伏不等。虽然人们通过各种办法来防止静电的发生,但仍然不能做到完全消除静电。这不仅带来了半导体器件生产、测试、包装、储存、运输、安装以及使用等各个环节的成本增加,还给半导体器件的制造良率、使用寿命和可靠性带来负面影响。比如,静电对半导体器件的损伤,会降低生产成品率;在安装或使用过程中,静电造成的半导体器件部分损坏或完全损坏,会严重影响半导体器件所在整体设备或仪器的可靠性和使用寿命。族氮化物是第三代半导体的典型代表之一,由于其具有高电子迁移率、高饱和速度、高击穿场强、高热导率、较低的介电常数、化学稳定性好、抗辐照能力强、直接带隙、带隙覆盖了从红色到紫外的光谱范围等诸多优势,在光电子、高温大功率电子器件和高频微波器件应用方面有着广阔的前景,例如可以制作发光二极管(LED)、激光二极管(LD)、光电探测器、高电子迁移率晶体管(HEMT)、场效应晶体管、微波器件等等。目前发展最为成熟的是发光二极管,其在半导体照明、显示、背光等领域广泛应用,为全球节能减排作出了重大贡献。其他方面的应用也正得到全球科研人员和生产企业的高度关注。按照理论预测,由于族氮化物具有高击穿场强的特点,其抗静电能力应该非常好。然而,长期以来由于没有单晶衬底,或单晶衬底的价格非常高,使族氮化物通常采用异质衬底进行外延生长,常用的衬底材料包括蓝宝石(Al2O3)单晶、碳化硅(SiC)单晶和硅(Si)单晶等。异质外延生长过程中,由于异质衬底和族氮化物之间较大的晶格失配和热失配导致族氮化物穿透位错密度通常高达108─1010cm-2量级。这些高密度的位错通常是族氮化物器件中的薄弱环节,容易产生漏电,在承受静电的时候,也最容易被击穿,大大降低了族氮化物器件的抗静电能力,使器件的抗静电能力远低于族氮化物的理论抗静电能力。为了解决族氮化物由于位错密度高而引起的抗静电差的问题,科研人员提出了很多办法,概况起来主要有两种思路:一种是通过外部手段,在器件安装使用的过程中为器件并联一个齐纳二极管来释放静电,从而保护族氮化物半导体器件不被静电损伤;另一种是从族氮化物本身入手,即降低族氮化物材料中的穿透位错等缺陷密度,增强电流扩展,使静电荷更加均匀地分布到器件中,从而降低局部被静电击穿的风险。第一种思路可以很有效地解决使用过程中的静电破坏问题,但会增加成本(因为要额外增加一个齐纳二极管以及相应的安装成本),且不能解决族氮化物半导体器件在生产、测试、包装、储存、运输、安装等其他环节静电损伤问题。第二种思路相对来说成本更低,但由于很难大幅度降低族氮化物材料中的穿透位错缺陷,使得该方法取得的效果有限,通常获得的半导体器件抗静电能力从几百伏到几千伏之间,很难承受1万伏以上的静电冲击。而实际生产、测试、包装、储存、运输、安装和使用中经常会碰到1万伏以上的静电压,这对族氮化物半导体器件以及其所在的设备和仪器是一个巨大的隐患。另外,为了获得具有一定范围抗静电能力的半导体器件,通常在生产过程中会引入静电筛选的环节,具体做法是给器件施加特定电压伏值的静电进行百分百测试,将被静电完全损坏的器件筛出。然而,静电筛选首先会使生产成本增加,其次还对未完全损坏的器件造成一定程度的损伤,给器件的后续使用可靠性带来隐患。因此,获得具有高抗静电能力的族氮化物半导体器件显得非常重要。发明内容本发明的目的在于提供一种具有抗静电层的III族氮化物半导体外延结构,该抗静电层可使族氮化物中的穿透位错附近区域相较于远离穿透位错区域变为高电阻特性,从而在族氮化物半导体器件承受高电压静电时,使电流不从穿透位错位置流过,而是较为平均地分布于无穿透位错区域,相当于屏蔽了大量的穿透位错缺陷,从而大幅提升族氮化物半导体器件的抗静电性能,使之接近无穿透位错的族氮化物应有的高抗静电能力。本发明的目的是这样实现的:一种具有抗静电层的III族氮化物半导体外延结构,包括族氮化物半导体外延结构前端部分和族氮化物半导体外延结构后续部分,其特征在于:在所述族氮化物半导体外延结构前端部分和所述族氮化物半导体外延结构后续部分之间插入有AlxGa1-xN抗静电层;所述族氮化物半导体外延结构前端部分含有倒六角锥结构,所述倒六角锥结构形成于所述族氮化物半导体外延结构前端部分内的穿透位错线位置处,倒六角锥结构由平面以及镶嵌在平面内的倒六角锥状坑组成,穿透位错线和倒六角锥状坑锥底尖端相交;所述AlxGa1-xN抗静电层形成于所述倒六角锥结构之上并填充所述倒六角锥状坑锥底形成一个平台;所述III族氮化物半导体外延结构后续部分位于所述AlxGa1-xN抗静电层之上并将所述倒六角锥结构形成的倒六角锥状坑填平;所述AlxGa1-xN抗静电层在倒六角锥结构的平面、倒六角锥状坑侧壁以及倒六角锥状坑锥底位置具有不同的厚度;所述倒六角锥状坑表面对角宽度为L,所述AlxGa1-xN抗静电层在所述倒六角锥结构平面的Al组分0.3≤x≤1,厚度为h1,所述AlxGa1-xN抗静电层在所述倒六角锥状坑侧壁的Al组分0.3≤x≤1,厚度为h2,所述AlxGa1-xN抗静电层在所述倒六角锥状坑锥底的Al组分0.3≤x≤1,宽度为L1,其中2≤h2h1,50nm≤L≤500nm,0.1≤L1L≤0.8。所述倒六角锥结构还能通过增设一层倒六角锥结构形成层来形成;所述倒六角锥结构形成的倒六角锥状坑还能通过增设一层倒六角锥结构合并层来填平。所述AlxGa1-xN抗静电层在倒六角锥结构的平面、倒六角锥状坑侧壁以及倒六角锥状坑锥底位置具有不同的Al组分,且AlxGa1-xN抗静电层在倒六角锥状坑锥底位置填充的Al组分高于AlxGa1-xN抗静电层在倒六角锥结构的平面和倒六角锥状坑侧壁的Al组分。所述族氮化物半导体外延结构为族氮化物的发光二极管外延结构、激光二极管外延结构、光电探测器外延结构、高电子迁移率晶体管外延结构、场效应晶体管外延结构或微波器件外延结构中的一种。所述倒六角锥结构的平面为族氮化物材料体系的(0001)面,倒六角锥状坑的六个锥面为族氮化物材料体系{10–11}面族的六个面;所述倒六角锥结构中倒六角锥状坑在平面上的分布密度为ρ,即为单位面积上倒六角锥的个数,ρ与族氮化物半导体外延结构中的穿透位错密度基本相等,1×106cm-2≤ρ≤1×1010cm-2。所述具有抗静电层的族氮化物半导体外延结构能包含一层以上所述倒六角锥结构和所述AlxGa1-xN抗静电层。本发明的特点在于:首先在一种族氮化物半导体外延结构的族氮化物材料内部穿透位错线位置形成倒六角锥结构,然后在倒六角锥结构的基础上设一层AlxGa1-xN抗静电层,此AlxGa1-xN抗静电层在倒六角锥状坑侧壁的厚度显著大于其在平面上的厚度(至少2倍以上),并且在倒六角锥状坑锥底位置形成一个平台,形成平台意味着在穿透位错线位置填充了大量的AlxGa1-xN,这就使得穿透位错线在倒六角锥状坑底部附近(包括倒六角锥状坑底部和侧壁)形成远高于倒六角锥结构平面位置的电阻,尤其是紧挨穿透位错线的倒六角锥状坑底部由于填充了大量的AlxGa1-xN而电阻最高,从而使得有外加电场时,电流不从穿透位错线附近流过,有效屏蔽了穿透位错线的漏电。特别地,在族氮化物半导体外延结构承受高电压静电时,电流不从穿透位错位置流过,而是较为平均地分布于无穿透位错区域,从而大幅提升族氮化物半导体外延结构的抗静电性能,使之接近无穿透位错的族氮化物应有的高抗静电能力。本发明所提出的一种具有抗静电层的族氮化物半导体外延结构是一种既具有高抗静电性能、又不增加额外成本的新结构。附图说明图1为本发明的剖面图;图2为本发明在族氮化物半导体外延结构前端部分上形成倒六角锥结构后的立体图;图3为本发明在族氮化物半导体器件前端部分上形成倒六角锥结构并设立AlxGa1-xN抗静电层后的立体图;图4为本发明在族氮化物半导体器件前端部分上形成倒六角锥结构并设立AlxGa1-xN抗静电层后的俯视图;图5为本发明在高电子迁移率晶体管中的应用示例;图6为本发明在发光二极管中的应用示例一;图7为本发明在发光二极管中的应用示例二;其中:100─III族氮化物半导体外延结构前端部分,101─衬底,102─缓冲层,103─第一高阻层,104─N型层,105─准备层,106─第一段准备层,200─AlxGa1-xN抗静电层,201─倒六角锥结构形成层,202─倒六角锥结构合并层,203─第一层AlxGa1-xN抗静电层,204─第二段准备层,205─第二层AlxGa1-xN抗静电层,300─III族氮化物半导体外延结构后续部分,301─第二高阻层,302─沟道层,303─势垒层,304─盖层,305─多量子阱层,306─P型电子阻挡层,307─P型层,308─第三段准备层,400─穿透位错线,500─倒六角锥结构,501─倒六角锥状坑,502─平面。具体实施方式下面结合实施例并对照附图对本发明作进一步详细说明。本发明提出一种具有抗静电层的族氮化物半导体外延结构。如图1,图2,图3,图4所示,一种族氮化物半导体外延结构,由下至上依次为:族氮化物半导体外延结构前端部分100、AlxGa1-xN抗静电层200和所述族氮化物半导体外延结构后续部分300;所述族氮化物半导体外延结构前端部分100含有倒六角锥结构500,所述倒六角锥结构500形成于所述族氮化物半导体外延结构前端部分100内的穿透位错线400位置处,倒六角锥结构由平面502以及镶嵌在平面内的倒六角锥状坑501组成,穿透位错线400和倒六角锥状坑501的锥底尖端相交;所述AlxGa1-xN抗静电层200形成于所述倒六角锥结构500之上并填充所述倒六角锥状坑501锥底形成一个平台;所述III族氮化物半导体外延结构后续部分300位于所述AlxGa1-xN抗静电层200之上并将所述倒六角锥结构500形成的倒六角锥状坑501填平;所述AlxGa1-xN抗静电层200在倒六角锥结构500的平面502、倒六角锥状坑侧壁501以及倒六角锥状坑501的锥底位置具有不同的厚度;所述倒六角锥状坑501表面对角宽度为L,所述AlxGa1-xN抗静电层200在所述倒六角锥结构平面502的Al组分0.3≤x≤1,厚度为h1,所述AlxGa1-xN抗静电层200在所述倒六角锥状坑501侧壁的Al组分0.3≤x≤1,厚度为h2,所述AlxGa1-xN抗静电层200在所述倒六角锥状坑501的锥底的Al组分0.3≤x≤1,宽度为L1,其中2≤h2h1,50nm≤L≤500nm,0.1≤L1L≤0.8。所述倒六角锥结构500还能通过增设一层倒六角锥结构形成层201来形成;所述倒六角锥结构500形成的倒六角锥状坑501还能通过增设一层倒六角锥结构合并层202来填平。所述AlxGa1-xN抗静电层200在倒六角锥结构500的平面502、倒六角锥状坑501侧壁以及倒六角锥状坑501锥底位置具有不同的Al组分,且AlxGa1-xN抗静电层200在倒六角锥状坑501锥底位置填充的Al组分高于AlxGa1-xN抗静电层200在倒六角锥结构的平面502和倒六角锥状坑501侧壁的Al组分。所述族氮化物半导体外延结构为族氮化物的发光二极管外延结构、激光二极管外延结构、光电探测器外延结构、高电子迁移率晶体管外延结构、场效应晶体管外延结构或微波器件外延结构中的一种。所述倒六角锥结构的平面为族氮化物材料体系的(0001)面,倒六角锥状坑的六个锥面为族氮化物材料体系{10–11}面族的六个面;所述倒六角锥结构500中倒六角锥状坑501在平面502上的分布密度为ρ,即为单位面积上倒六角锥的个数,ρ与族氮化物半导体外延结构中的穿透位错密度基本相等,1×106cm-2≤ρ≤1×1010cm-2。所述具有抗静电层的族氮化物半导体外延结构能包含一层以上所述倒六角锥结构500和所述AlxGa1-xN抗静电层200。实施例1:现有III族氮化物的高电子迁移率晶体管外延结构从下至上依次为:衬底、缓冲层、高阻层、沟道层、势垒层和盖层。如图5所示,为一种具有抗静电结构的族氮化物半导体外延结构在高电子迁移率晶体管中的应用示例。在现有高电子迁移率晶体管外延结构的基础上从高阻层内部将高电子迁移率晶体管分为前端部分和后续部分。族氮化物半导体器件前端部分100(此处族氮化物半导体外延结构特指高电子迁移率晶体管外延结构)由衬底101,缓冲层102和第一高阻层103组成,族氮化物半导体外延结构后续部分300(此处族氮化物半导体外延结构特指高电子迁移率晶体管外延结构),由第二高阻层301,沟道层302,势垒层303和盖层304组成。在族氮化物半导体器件前端部分100和族氮化物半导体外延结构后续部分300之间增设倒六角锥结构形成层201形成倒六角锥结构500,AlxGa1-xN抗静电层200形成于倒六角锥结构500之上,倒六角锥状坑501表面对角宽度为L,AlxGa1-xN抗静电层200在平面502上的Al组分0.3≤x≤1,厚度为h1,AlxGa1-xN抗静电层200在倒六角锥状坑501侧壁的Al组分0.3≤x≤1,厚度为h2,倒六角锥状坑501的锥底位置被AlxGa1-xN抗静电层200填充并形成一个平台,AlxGa1-xN抗静电层200在平台的Al组分0.3≤x≤1,平台的宽度为L1,其中3nm≤h1≤20nm,5≤h2h1,150nm≤L≤300nm,0.5≤L1L≤0.8。然后再利用倒六角锥结构合并层202将倒六角锥状坑501填平。在本实施例中,倒六角锥结构500的形成和填平都额外引入了倒六角锥结构形成层201和倒六角锥结构合并层202。并且高电子迁移率晶体管的高阻层被分成第一高阻层103和第二高阻层301两部分,相当于将在倒六角锥结构500之上形成的AlxGa1-xN抗静电层200插入到了高阻层内,形成了本发明一种具有抗静电层的高电子迁移率晶体管外延结构。由于前文提及的原因,该抗静电结构可大幅提升高电子迁移率晶体管外延结构的抗静电性能,同时能够提升其反向击穿电压。实施例2:现有III族氮化物的发光二极管外延结构从下至上依次为:衬底、缓冲层、N型层、准备层、多量子阱层、P型电子阻挡层、P型层。如图6所示,为一种具有抗静电层的III族氮化物半导体外延结构在发光二极管中的应用示例一。在现有III族氮化物的发光二极管外延结构的基础上从准备层105和多量子阱层305交界处将发光二极管外延结构分为前端部分和后续部分,III族氮化物半导体外延结构前端部分100(此处III族氮化物半导体器件特指发光二极管外延结构)由衬底101、缓冲层102、N型层104和准备层105组成,倒六角锥结构500利用发光二极管外延结构的准备层105形成,AlxGa1-xN抗静电层200形成于所述倒六角锥结构500之上,倒六角锥状坑501的表面对角宽度为L,AlxGa1-xN抗静电层200在平面502上的Al组分0.3≤x≤1,厚度为h1,AlxGa1-xN抗静电层200在倒六角锥状坑501侧壁的Al组分0.3≤x≤1,厚度为h2,倒六角锥状坑501的锥底位置被AlxGa1-xN抗静电层200填充并形成一个平台,AlxGa1-xN抗静电层200在平台的Al组分0.3≤x≤1,平台的宽度为L1,其中:2nm≤h1≤10nm,5≤h2h1,150nm≤L≤200nm,0.3≤L1L≤0.5。III族氮化物半导体外延结构后续部分300(此处III族氮化物半导体器件特指发光二极管外延结构),由多量子阱层305、P型电子阻挡层306和P型层307组成,P型层将倒六角锥结构500所形成的倒六角锥状坑501填平。在本实施例中,倒六角锥结构500的形成和填平都利用了发光二极管外延结构的原有层来实现。将在倒六角锥结构500之上形成的AlxGa1-xN抗静电层200插入到准备层105和多量子阱层305之间,形成了本发明一种具有抗静层的发光二极管外延结构。由于前文提及的原因,该抗静电层可大幅提升发光二极管外延结构的抗静电性能。实施例3:如图7所示,为一种具有抗静电层的III族氮化物半导体外延结构在发光二极管中的应用示例二。在发光二极管外延结构的准备层位置插入由第一层AlxGa1-xN抗静电层203和第二层AlxGa1-xN抗静电层205构成的两层AlxGa1-xN抗静电层,准备层被两层AlxGa1-xN抗静电层分成三段。III族氮化物半导体外延结构前端部分100(此处III族氮化物半导体器件特指发光二极管外延结构)由衬底101,缓冲层102、N型层104和第一段准备层106组成,倒六角锥结构500利用发光二极管外延结构的第一段准备层106形成,之后依次为第一层AlxGa1-xN抗静电层203、第二段准备层204、第二层AlxGa1-xN抗静电层205。III族氮化物半导体外延结构后续部分300(此处III族氮化物半导体器件特指发光二极管外延结构),由多量子阱层305、P型电子阻挡层306、P型层307和第三段准备层308组成,P型层307将倒六角锥结构500所形成的倒六角锥状坑501填平。在本实施例中,倒六角锥结构500的形成和填平都利用了发光二极管外延结构的原有层来实现。将两层AlxGa1-xN抗静电层插入到准备层中,形成了本发明一种具有抗静电层的发光二极管外延结构。由于前文提及的原因,该抗静电层可大幅提升发光二极管外延结构的抗静电性能。最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

权利要求:1.一种具有抗静电层的族氮化物半导体外延结构,包括族氮化物半导体外延结构前端部分和族氮化物半导体外延结构后续部分,其特征在于:所述族氮化物半导体外延结构前端部分和所述族氮化物半导体外延结构后续部分之间插入有AlxGa1-xN抗静电层;所述族氮化物半导体外延结构前端部分含有倒六角锥结构,所述倒六角锥结构形成于所述族氮化物半导体外延结构前端部分内的穿透位错线位置处,倒六角锥结构由平面以及镶嵌在平面内的倒六角锥状坑组成,穿透位错线和倒六角锥状坑锥底尖端相交;所述AlxGa1-xN抗静电层形成于所述倒六角锥结构之上并填充所述倒六角锥状坑锥底形成一个平台;所述III族氮化物半导体外延结构后续部分位于所述AlxGa1-xN抗静电层之上并将所述倒六角锥结构形成的倒六角锥状坑填平;所述AlxGa1-xN抗静电层在倒六角锥结构的平面、倒六角锥状坑侧壁以及倒六角锥状坑锥底位置具有不同的厚度;所述倒六角锥状坑表面对角宽度为L,所述AlxGa1-xN抗静电层在所述倒六角锥结构平面的Al组分0.3≤x≤1,厚度为h1,所述AlxGa1-xN抗静电层在所述倒六角锥状坑侧壁的Al组分0.3≤x≤1,厚度为h2,所述AlxGa1-xN抗静电层在所述倒六角锥状坑锥底的Al组分0.3≤x≤1,宽度为L1,其中2≤h2h1,50nm≤L≤500nm,0.1≤L1L≤0.8。2.根据权利要求1所述的具有抗静电层的族氮化物半导体外延结构,其特征在于:所述倒六角锥结构还能通过增设一层倒六角锥结构形成层来形成;所述倒六角锥结构形成的倒六角锥状坑还能通过增设一层倒六角锥结构合并层来填平。3.根据权利要求1或2所述的具有抗静电层的族氮化物半导体外延结构,其特征在于:所述AlxGa1-xN抗静电层在倒六角锥结构的平面、倒六角锥状坑侧壁以及倒六角锥状坑锥底位置具有不同的Al组分,且AlxGa1-xN抗静电层在倒六角锥状坑锥底位置填充的Al组分高于AlxGa1-xN抗静电层在倒六角锥结构的平面和倒六角锥状坑侧壁的Al组分。4.根据权利要求1或2所述的具有抗静电层的族氮化物半导体外延结构,其特征在于:所述族氮化物半导体外延结构为族氮化物的发光二极管外延结构、激光二极管外延结构、光电探测器外延结构、高电子迁移率晶体管外延结构、场效应晶体管外延结构或微波器件外延结构中的一种。5.根据权利要求1或2所述的具有抗静电层的族氮化物半导体外延结构,其特征在于:所述倒六角锥结构的平面为族氮化物材料体系的(0001)面,倒六角锥状坑的六个锥面为族氮化物材料体系{10–11}面族的六个面;所述倒六角锥结构中倒六角锥状坑在平面上的分布密度为ρ,即为单位面积上倒六角锥的个数,ρ与族氮化物半导体外延结构中的穿透位错密度基本相等,1×106cm-2≤ρ≤1×1010cm-2。6.根据权利要求1或2所述的具有抗静电层的族氮化物半导体外延结构,其特征在于:所述具有抗静电层的族氮化物半导体外延结构能包含一层以上所述倒六角锥结构和所述AlxGa1-xN抗静电层。

百度查询: 南昌大学 一种具有抗静电层的III族氮化物半导体外延结构

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。