买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:泰德网聚(北京)科技股份有限公司
摘要:本申请实施例提供一种基于多模型的语音数据分析方法及装置,方法包括:在获取到用户授权后,对所述用户发送的语音信息流进行短时窗口帧划分,提取得到梅尔频谱系数;对梅尔频谱系数进行降维处理,得到声学特征向量,根据声学特征向量和预设语音模型库中包含的各语音内容分析模型的声学特征向量进行余弦相似度计算;根据余弦相似度计算的结果确定多个语音内容分析模型和相应的权重;根据多个语音内容分析模型得到多个初级模型;根据初级模型构建得到堆叠特征集,并根据预设上层模型对所述堆叠特征集进行训练,得到目标语音分析模型,根据目标语音分析模型得到关键内容;本申请能够有效提高语音数据的分析准确性和效率。
主权项:1.一种基于多模型的语音数据分析方法,其特征在于,所述方法包括:在获取到用户授权后,对所述用户发送的语音信息流进行短时窗口帧划分,并将所述短时窗口帧后划分后的语音信息流输入预设梅尔滤波器组,提取得到所述语音信息流的梅尔频谱系数;对所述梅尔频谱系数进行主成分分析降维处理,得到对应的声学特征向量,根据所述声学特征向量和预设语音模型库中包含的各语音内容分析模型的声学特征向量进行余弦相似度计算;根据所述余弦相似度计算的结果确定对应的多个语音内容分析模型,并将所述多个语音内容分析模型的余弦相似度计算的结果进行归一化处理,确定所述多个语音内容分析模型相应的权重;根据设定模型训练集对所述多个语音内容分析模型进行模型训练,得到多个初级模型,并将所述多个语音内容分析模型相应的权重设定为所述多个初级模型相应的权重,其中,所述设定模型训练集由经过所述主成分分析降维处理后的梅尔频谱系数和相应的语音内容标签构建得到,其中,所述初级模型的输入特征为所述梅尔频谱系数,所述初级模型的目标输出为所述语音内容标签;根据所述初级模型的输出结果按照所述权重进行加权求和,构建得到堆叠特征集,并根据所述堆叠特征集对预设上层模型进行训练,得到目标语音分析模型,根据所述目标语音分析模型对所述语音信息流进行语音内容分析,得到经过所述语音内容分析后的关键内容,其中,上层模型学习了堆叠特征集与语音内容标签之间的关系,所述上层模型的训练利用了堆叠特征集中融合的信息,对整体系统进行了端到端的优化。
全文数据:
权利要求:
百度查询: 泰德网聚(北京)科技股份有限公司 基于多模型的语音数据分析方法及装置
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。