买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:济南大学
摘要:本发明公开了基于信息瓶颈和深度学习的微表情识别方法及系统,其中方法,包括:提取微表情视频序列的起点帧和顶点帧;对起点帧和顶点帧进行预处理,对预处理后的起点帧和顶点帧分别提取垂直特征图、水平特征图和光学应变特征图;将起点帧和顶点帧的垂直特征图、水平特征图和光学应变特征图,均输入到训练后的微表情识别模型中,输出微表情识别结果;其中,训练后的微表情识别模型,分别对起点帧和顶点帧的垂直特征图、水平特征图和光学应变特征图进行特征提取和第一次特征压缩,将第一次压缩后的特征进行融合得到融合特征,再对融合特征进行第二次特征压缩,对第二次特征压缩后的特征进行数据展平和分类,得到微表情识别标签。
主权项:1.基于信息瓶颈和深度学习的微表情识别方法,其特征是,包括:获取待识别的微表情视频序列;提取微表情视频序列的起点帧和顶点帧;对起点帧和顶点帧进行预处理,对预处理后的起点帧和顶点帧分别提取垂直特征图、水平特征图和光学应变特征图;将起点帧和顶点帧的垂直特征图、水平特征图和光学应变特征图,均输入到训练后的微表情识别模型中,输出微表情识别结果;其中,训练后的微表情识别模型,分别对起点帧和顶点帧的垂直特征图、水平特征图和光学应变特征图进行特征提取和第一次特征压缩,将第一次压缩后的特征进行融合得到融合特征,再对融合特征进行第二次特征压缩,对第二次特征压缩后的特征进行数据展平和分类,得到微表情识别标签。
全文数据:
权利要求:
百度查询: 济南大学 基于信息瓶颈和深度学习的微表情识别方法及系统
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。